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SUMMARY

The differential equation proposed by Steinhausenlo for the
response of the semicircular canals includes two constants which
must be determined experiméntally or computed from known
canal characteristics. There is general agreement regarding

the value of the Jc'atio~ of the two conétants, but wide differences
BiAnedine flaii antnal values. - THisr-naner»'examines.the evidence .

for the difféerent values of these constm':d:so

i
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INTRODUCTION

Steinhausenlo defined the response of the semicircular canals by the equa-

tion,
e + L3 +Ppo = fit) (1)

where

© = displacement of the endolymph

- & - 2

L=7 P =3
and

@ = the moment of viscous force exerted on the endolymph per

. unit angular velocity ' -

I = the moment of inertia of the fluid .

A= the elastiC -moment exerieu v e ,cu\:culyu;yh..yu; ian
angular displacement.
The ratio % is the time constant 7of the canals and has been established by
various methods. There is general agreement between these methods whwh

give a value of 7 between 7 and 10 for the canals of man.

There is no such agreement, however, for the values of L and P. Van Egmond,2
et al, and Niven and Hixson, give approximate values of L = 10 and P = 1,

while Mayne7found values of L = 200 and P = 24; Jones and Milsunft published
freduency response o}f the canals corresponding to still higher values for these
constants. "I"be discrepancy is in the value of L, because P is not determined
directly but EOmputed from L and the time constant 7. It is proposed to

examine here the manner in which the constant L. has been calculated.
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THE CONSTANT OF THE SEMICIRCULAR CANAL
DIFFERENTIAL EQUATION

Hydrodynamic Considerations

Schmaltz9 was perhaps the first to apply mathematical analysis to the semi-
circular canals. His equation did not include the elasticity of the cﬁpula,
which was introduced by Steinhausen{o It included, however, the constant L.
He computed L from the following formula which he derived from hydrodynam-

ic considerations.

(oo}

M
L =——5— (2)
s
where
M = the coefficient of viscosity of the endolymph taken as

1 X"]r()"‘2 sr/em sec .
vl

~density of the endoclymph taken as 1 gr/cm: -

o=
i

=
I

internal radius of the semicircular canals-taken as

2 %1072 cm.

Using this formula and the above values for the characteristics of the endo-

9

lymph and dimensions of the canals, Schmaltz’ obtains,

L = 200,

Mayne5 used this value of L, together with an estimated time constant of

8.3, to compute P = 24,

The same formula was used by van Egmond, et al, 2 with alteration, to com-
pute L, and has been referred to frequently in the literature. Because of
the discrepancy in the value of L computed by this formula and that proposed

by various investigators, it is well to examine its derivation.
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Derivation of the Formula

The formula is based on the Hagen Poiseuille law for laminar flow in pipe.
Laminar flow always occurs when the Reynold number is less than 2200. The
Reynold number of the semicircular canal probably never exceeds one (1) or
two (2) and, therefore, the canals are well within the range of application of

the law.

From the laws of laminar flow of fluid in a tubel we have,

4 4
Ti(Pl—PZ)d ﬂ(Pl—PZ)r
Q= qasuy T Bap (3)
where
@ - hlluziI tffaid Acliearvad naranitaf time
P14. P, = the differeénce of pressure between the two ends
of the pipe
Q = the length of the pipe.
But,
. : 2 _
(P, -P)mmr =1 (4)
where
f = force exerted on the fluid.
Also,
v = —9——2 (5)
Tr
where

v = the velocity of the fluid.

Substituting Equations {(4) and (5) in Equation (3) gives

_ £
V‘. 81T [ (6)

but for the canal,

#

27R (7
where

R = the radius of curvature of the canal.

-3-
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Substituting Equatio.n (7) in Equation (6), and dividing by R to obtain angular

velocity, we have '

P Xg
|

f .
S e, (8)
16’!721‘ R2

Solving for the force on the endolymph per unit velocity gives

= 16 M2pR? (9)

®D|“h

or, in terms of moment per unit velocity,

fR

=& = 16”r /“R . (10)
0
The moment of inertia of the endolymph is
2

where
m = the mass of the endolymph,
giving,
| 1= 2mrlR7 (12)
where
° = the density of the fluid.

Finally, from Equations (10) and (12),

8
L= 222, (13)
I r

-

which is the formula derived by Schmaltz. We will see later that there is

an error or an omission in this derivation.
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The Effect of the Utricle

The formula is developed under the assumption that the canals form a com-
- plete circle of the same internal radius. Actually, as their name implies,
the canals comprise only about half a circle; the remaining half is taken up
by the utricle where the canal is very much enlarged and consequently the
flow is very much slower. Van Egmond, et al, 2 argued that because of the
reduction of velocity in the utricle, the viscosity can be neglected and the

constant eight (8) in Equation (13) should be reduced to four (4).

There is no question that viscosity can be neglected in a channel many times
the cross section of the canal. But there is a compensating factor to this.
reduction of viscosity. The mass can also be neglected. The kinetic energy

of the flow is proportional to the square of the velocity times the mass, If

wvalneitr ic voednnsod in tho carma nyranartian ac maca ie innaraacad thovro iac a

reduction of energy. If, for instance, the cross section of the canal is in- -
creased one hundredfold in the utricle {and the cross section is probably
increased by a much greater factor), the velocity is decreased and the mass
of the flow increased by the same ratio. The net effect will be to reduce the
kinetic energy by a factor of 100. We can say, then, that the effective mass
in the utricle is one percent that of a comparative length of canal, or 0.01

percent of the mass of fluid flow in the utricle.

It may be argued that during angular acceleration the same pressure is built
‘up per unit length, regardless of the size of the channel and,‘ therefore, that
the énlarged‘cﬁannel should contribute to the driving force on the fluid in the
same manner.as any other section of the canal. As soon as flow starts,
however, the fluid must be accelerated at the entrance of the canal from the
. utricle and the pressure will be lost. The pressure built up in the utricle

coﬂtributes a negligible amount in driving the endolymph in the canals.

It will be noted that the radius of curvature of the canals, or its lengfh,
does not enter into Formula (13). The value of L. is independent of what

-5-
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proportion of canal is taken up by the utricle. ‘The reduction of the constant
from eight to four as proposed by van Egmond, et al, is not justified, there-
fore, on the ground of the reduced velocity in the utricle. It is justified,

however, on other grounds.

The Effect of Parabolic Distribution of Velocity in the Canals

The distribution of velocity across the diameter of a tube is not constant for
laminar flow. This distribution is taken into account in Equation (3) insofar
as the volume of fluid delivered by the pipe is concerned. The linear velocity
in Equation (5) and the angular velocityé in Equation (8) are average veloci-
ties. The average angular velocity of the endolymph integrated with respect

to time is a true measure of the cupula displacement.

-

The wreengl TIlooit Wnwamaw sannat ha nead in the computation of inertial
forces. Equation (1) is'derived on the basis of an equilibrium between
inertial, viscous, and elastic forces, or, amounting to the same thing, by

an accounting of all energies in the way of the kinetic energy of the fluid, the
potential energy of the displaced cupula, energy losses through viséosity,
and energy input through transient movements of the head. The derivation

implies that the energy of the flow is

/ € = %mv2
where
e °~ = the kinetic energy of the flow of the endolymph
m- = the mass of the endolymph
v = the linear velocity.

But this formula does not give the true value of ¢ if the average velocity is
used. To obtain the true value, an integration must be performed of the
product of incremental masses of endolymph by half the square of their
velocity. The difference can be corrected by using an effective mass
different from the actual one. We will estimate the factor by which the actual

mass must be multiplied to obtain the proper value of the effective mass.

b
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As indicated above, the distribution of velocity across the diameter of a
pipe is parabolic for laminar flow. It is zero at the wall and a maximum at
the center. Let us express the velocity by the formula

v = a(R 2 rz) (14)
p
where
v = velocity of the fluid at a distance r from the center
Rp = the internal radius of the pipe
a = a constant as a function of viscosity.

The equation fulfills the condition of parabolic laminar flow with zero velo-
city at the wall and maximum velocity at the center. We will first derive
the kinetic energy of the flow per unit time as computed wrongly from

average velocity.

The flow per second cédmputed on the basis of Equation (14) is

R
. p ; 2 2
Q= (27rrdr) a(R_~ -1r") (15)
o p _
R
Q=2ﬂa] PR 2 - r? rdr
o p
- 7a 4
The average velocity Va is given by
' - 9
e Va© A (17)
where A is the internal area of the pipe, and,
A=TR %
p
and, therefore,
4
a R 1 2
v =12 -—P-Z— = 5aR . (19)
a2 MR B
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The kinetic energy éw per second computed, wrongly, on the basis of
average velocity would be

e =1iqw % (20)

or, from Equations (16) and (19),

4
: 7aR 2,2
£, TPz (2R ") (21).
.« _ 1, 3.8
€ = 'l‘gPTTa Rp . (22)

We next compute the correct kinetic energy ¢ o of the flow by integrating the
product of the flow at each increment of radius by half the velocity squared

at the same point. The flow per second for an increment of radius dr is

[2aNaRY

dQ = (< \Wr arj vr vt
2 2
dQ = (27T r dr) a(I-‘Lp -1 ),
and the increment of energy is
. _ 5
déc =Lp(2 T'r dr) [a(RpZ’ - rz)] {a(sz - rz)] (25)

and, therefore,

: =-—é1°ﬂ‘a R ° . (27)

€ = 2€ . | (28)
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To correct for this effect we must double the value of # in Equation (13)
and the equation becomes

L= 324 (29)
rpP

This is the same equation used by van Egmond, et arf‘ but derived on other

grounds.

Check of the Formula

Sehmaltz used a value of r = 0.02 cm for the internal radius of the canals
of man. A more accurate figure appears to be about 0.014, so that if this
dimension is used in the modified formula, the value of L = 200 remains ap-

proximately the same.

Van Egmond, et al,” applied the fornmiula to compute the constaut L i the.
canals of man in an attempt to confirm the value of 10 derived by other means.
They used a value of 0.006 for the coefficient of viscosity instead of 0.01

used by Schmaltz.9 This would have the effect of reducing the constant. In
addition, they took the radius of the canal to be r = 0.030 ¢cm, whereas, as
indicated earlier, the presently accepted value is about r = 0,014. On this
basis they obtained a value of L. = 27. Had the previously accepted value of

r been used, the result would have been L = 120 and 200 with a coefficient

of viscosity of 0.01. | '

A check of the formula may be made on the basis of experimentally derived
"L for the ray. ~In a series of carefully conducted experiments, Groen, et al,
derived the value of L = 35 for the elasmobranch horizontal semicircular
canals on the basis of measurements of the electrical activity of single fibers.

Considerable reliance can be placed on the validity of the value of L. The

internal radius squared of the ray is given by Jones and Spelis4as r2 =0.11 mm.

Assuming this dimension corresponds to that of the canals tested by Groen,

et a1,3 the value of L computed from Formula (29) would be

L =36 . (30)
-9~

2



GOODYEAR AEROSPACE

GERA-1083

This is a rather remarkable agreement between theory and experiment. The
agreement is probably too good not to involve some compensating errors.
Still, it lends weight to the likely validity of the formula.

Experimental Derivation of L. by van Egmond, et al. 2

Van Egmond, et al, 2 argued very properly that cupula displacement, and,
therefore, sensed velocity, lead actual motion for frequencies below the natural
frequency of the system and lag for frequencies above. If, therefore, a sub-
ject would signal the instant at which he sensed the velocity to be a maximum
for variable frequencies of oscillation, the natural frequency would be one

" between an observed lead and lag. P could then be computed from this value

by the formula

R (31)
and L determined from

L =Pr . (32)

In carrying out their experiments, van Egmond, et al, 2 used the ingenious
technique of allowing the oscillation to die out gradually so that only the max-

imum velocity portion of the cycle would be above threshold. The frequencies

at which lead and lag were noted were, respectively, 1.08 and 1.57 radians/second,

. or 0.189 and 0. 25 cps, from which they determined W, = 1.25 radians/second.
The phase lead and lag for these two frequencies can be computed from the

formula

tan & = 22— (33)
wlL

Using the value of L = 10 determined by van Egmond, et al, 4 on the basis

of these observations, we have

-10-
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where 61 is' the lead for a frequency of 0.189 cps and &, is the lag for a
frequency of 0.25 cps.

At these frequencies the time difference between the sensed point of maximum
velocity and the actual point is about 0.035 second. The subjective detection
of such small time differences would appear difficult. These time differences
would be 20 times shorter if the value of L. were taken to be 200 as computed
from Equation (29).

Subjective observations may be distorted by a number of factors. There is,
first, the reaction time delay which is normally an order of magnitude greater

) i . i - - e e P SR S SRR -~
TNETE ING dALldUs LILG LY Wbl vasw wve onememe o — Tommnd

- i = .

Ll e dbn mAanttivad aAacITANYT .
_~ . -~

body axis which is greatest at high velocity. It would appear, therefore, that

the values determined by van Egmond, et al, 4 are open to question.

Determination of the Value of L. by Niven and Hixson8

Niven and Hixs0n8 computed L on the basis of a series of excellent experiments
relating the phase shift of nystagmus to an impressed sinusoidal motion for

the steady state. Their method is not open to the same objections as that of
van Egmond. In the first place, the measurements are objective and do not
introduce the problem of reaction time delay or shift of sensed body axis. In
the second pléce, the measurements of phase are taken at zero velocity,
eliminating é’i‘rors due to leading eye movements. There remains, however, a

problem of the possible accuracy of phase measurement.

Niven and Hixson8 realized that the accuracy of the determination of L required
the use of the highest possible frequency of oscillation. In a highly damped
system, such as the semicircular canals, the response at low frequency is
affected mostly by the time constant, while the value of L affects mainly the

response at high frequencies. Niven and Hixson, 8 however, were probably

-11-
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limited by their equipment to a maximum frequency of 0.2 cps. It can be
computed that at this frequency an error of measurement of about four de-
grees would account for the discrepancy between a value for L of 16 such
as found in these experiments and one of 200. Some doubts are permitted
whether or not the nystagmus follows vestibular signals to this degree of

accuracy, assuming methods of measurement are adequate.

The Effect of Cupula Leakage

In order to explain the discrepancy between their computed value of 27 and an
experimentally derived value of 10 for L, van Egmond, et al;2 assumed that
leakage did occur between the cupula and the walls of the ampulla. It is,
therefore, desirable to investigate the effect of such leakage on the values

of the constants of the equation.

. 2 - - - . -

e B AR : » 1. L. vy
UVAN LY 4 VKLlGd Y ALl @ 10any VUM ULA.

A sy VA R AMA M VA LUV A WAL LAE L LA sa

Figure 1. Schematic representation of leaky cupula.

-12-
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We let:

Oe = endolymph displacement with respect to the walls

e c ° cupula angular displacement where © is assumed
equal to 6 c for the case of zero cupula leakage

dwi = viscous moment on endolymph per unit velocity of
endolymph

d’z = viscous moment on endolymph per unit velocity of
~cupula

A = elastic force on endolymph per unit deflection of
cupula

I = the effective moment of inertia of the endolymph and

of all other mass in the system.

Far the sake of simplicity, we consider the case without input head movements.

Values of CONSTANLS e5titmaiun v t0iT LOOie WATIO 0UVIVUDLY we vl IIT7 2

would be derived with a forcing function.

8 +8,0, +8, (6,-0)=0 (34)
£ _=8,(0, -0 ) . (35)

Equation (34) expresses the fact that viscous forces and inertial forces should
add up to zero around the loop. Equation (35) states that cupula deflection
is proportional to the difference of force between the two opposite walls of

the cupula.
Solving Equaiion (35) for ée’

6 =0 + 20 (36)

6 =0 + =06 . (37)
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Substituting Equations (35), (36), and (37) in Equation (34) makes it possible

to eliminate Be, giving
L4 IA
0 4+ e +(—~+1) ec=o (38)

c ﬂ)l d>2

or, in terms of L. and P, as defined previously,
s 1A ) d:l
0 +(¢1 d’z + 1> LGC +(E; + 1) PGC = 0, (39)

If there is no leakage on the cupula, the value of d)z is infinite and the equation

becomes

6 +L6 +Po =0, (40)
C C C

. LIRS Y . N

LIPR A nnnuvnlnnf t+n kmnarvnn Tt W”HH“I A LU L AL .Luu\,w.uu. AR vikss  wvims e

-1 -

ee = ec. The latter assump‘uon does not affect the quahtatlve results of the
analysis, which shows that the effect of cupula leakage is to increase the values.
"of L, and P. Cupula leakage cannot be invoked, therefore, to account for a

reduction of L computed on the basis of no leakage. The effect is opposite.

Functional Requirement

The value of L. defines the limits of high frequency response for the canal.
The so-called high corner frequency is given by the formula

L
fu 37 cps. (41)

This gives a value for man of

f
u

32 cps for L = 200
1.6 cps for L = 10,

i

The upper corner frequency is a point in the frequency response curve where

the phase shift is 45 degrees and the amplitude ratio is 0.707. A component

-14-
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of a system operating at its corner frequency would produce considerable
distortion. A control engineer designing a reasonably accurate system would
_certainly pick a value of ten to one between upper corner frequency of'a com -~
ponent and the over-all desired response of the system. The value of L = 200
would, therefore, be satisfactory for a frequency response of 3 cps, which
appears to be within the bandwidth of head motion. A corner frequency of

1.6 cps would seem totally inadequate.

It is, of course, dangerous to reason teleologically when we do not know the
exact configuration of the system. Still, it appears that better high frequency
response is called for the semicircular canals than can be provided by a canal

~ with an upper corner frequency of 1.6 cps.

The Adaptation of the Canalgs to Various Species

That the high frequency response of canals is defined by L and, therefore,
by 12 » as indicated by Eguation (29), is shown by a study of the adaptation
of canals to various species (Jones and Spells, 4 and Mayne ). Systematic
variations of r are indicated by these studies to correspond to estimated varia-

tions in the frequency of body movements of different species.

Deflection of the Cupula

The endolymph displacement is given by

éi 1
g =-L : , (42)
o L P-uw 2)2
—__LW. ~/ + 1

for a frequency within the bandwidth of the canal where

P

w “ apx.
ei
o =5,
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0 = endolymph displacement output

6. = velocity of the head.

If we assume that an average maximum velocity of the head is 5000/Sec, the

maximum deflection of the endolymph would be

_ 500 _ o ' -
) 90 =500 2,57 for L = 200
and
_ 500 _ .0 _
90 =0 50 for L = 10.

.. Not enough data are available regarding the size of canals and cupula to com-
pute the corresponding amount of cupula deflection. It may be expected that

it would be less, but assuming, with van Egmond, that cupula deflection is

V% EEP e 5 T ey S R T E . EX X T T B .
vmm e e e semae v Chatew W VAW W RANAN A Y AAA ALY AV T AdA AV MV WAL VLIAGAL ULEW U VY W AU ILAI VOLLAUAS

correspond to widely differing deﬂe‘ctions of the cupula. In view of the small
amount of deflection required by the basal membrane for adequate stimulation
of the auditory nerves in the cochlea, it would appear that the lower deflection
would be sufficient. Measurement of endolymph displacement for given velo-
city input at frequencies within the bandwidth of the system may provide a

means to evaluate the constant L.
Discussion

As long as vestibular research deals mainly with low frequency phenomena, as
‘in cupulometry or post-rotational reactions, the knowledge of the time constant
of the canals is sufficient. As research proceeds to the investigations of the
part played by the canals in the control of body movements, it becomes
necessary to know the actual value of the canal constants in addition to their
ratio. Experimentally derived values differ by an order of magnitude from
those computed theoretically. It is difficult to see what could be wrong with
the theoretical derivation, particularly when it fits carefully, experimentally
derived values for the canals of the elasmobranch and is consistent. with ob-
served variations of canal dimensions in various species. New experimental
-16~
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methods are needed to resolve the differences. These experiments must
make use of frequencies higher than used previously. Nystagmus may not
be a suitable variable to observe as an output of the vestibule. It could be
that the constants will have to be derived on the basis of analysis of move-
ments demonstrated to occur in response to vestibular signals. But there,
again, the mode of response of body control must first be established. It
cannot be assumed that the vestibule operates directly in closed lobp control
in body control. The more sophisticated system of programming must be
taken into account. In the meantime, without more data, it would seem that

the weight of evidence favors the higher valued constants.

=17~
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